资源类型

期刊论文 309

年份

2023 13

2022 15

2021 17

2020 19

2019 25

2018 11

2017 7

2016 15

2015 8

2014 24

2013 21

2012 15

2011 13

2010 26

2009 24

2008 10

2007 9

2006 3

2005 9

2003 6

展开 ︾

关键词

发展 4

钢箱梁 4

TRIP钢 3

三塔悬索桥 3

可持续发展 3

低成本 2

创新 2

压力容器技术 2

双相钢 2

宝钢 2

应用 2

悬索桥 2

整体沉放 2

新技术 2

析出强化 2

泰州大桥 2

疲劳 2

组合梁 2

苏通大桥 2

展开 ︾

检索范围:

排序: 展示方式:

Effect of fiber hybridization on energy absorption and synergy in concrete

Ahmadreza RAMEZANI, Mohammad Reza ESFAHANI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1338-1349 doi: 10.1007/s17009-019-0558-2

摘要: In the present study, steel and polypropylene (PP) fibers have been utilized with the intent of obtaining hybrid fiber-reinforced concrete (HFRC) with desirable mechanical properties. An attempt has been made to scrutinize the properties of HFRC with the main concentration being on energy absorption characteristics of concrete and the efficacy of fiber hybridization in producing synergy. Accordingly, a total of 180 specimens, representing 20 different mixtures have been cast and evaluated through compressive, split tensile, and flexural tests. The relevant flexural toughness of the specimens was calculated using ASTM C1018, ASTM C1609, JSCE, and PCS methods, and the effectiveness of these methods was evaluated based on the experimental results. It was observed that steel fibers are more effective in the improvement of flexural toughness in the presence of PP fibers. Furthermore, synergy associated with the combination of fibers at different stages of deflection of the beam specimens was observed and analyzed.

关键词: hybrid fiber-reinforced concrete     synergy     toughness     steel fibers     polypropylene fibers    

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1047-1057 doi: 10.1007/s11709-021-0755-3

摘要: Magnesium phosphate cement (MPC) received increased attention in recent years, but MPC-based concrete is rarely reported. The micro-steel fibers (MSF) were added to MPC-based concrete to enhance its ductility due to the high brittleness in tensile and flexural strength properties of MPC. This paper investigates the effect of MSF volume fraction on the mechanical properties of a new pattern of MPC-based concrete. The temperature development curve, fluidity, cubic compressive strength, modulus of elastic, axial compressive strength, and four-point flexural strength were experimentally studied with 192 specimens, and a scanning electron microscopy (SEM) test was carried out after the specimens were failed. Based on the test results, the correlations between the cubic compressive strength and curing age, the axial and cubic compressive strength of MPC-based concrete were proposed. The results showed that with the increase of MSF volume fraction, the fluidity of fresh MPC-based concrete decreased gradually. MSF had no apparent influence on the compressive strength, while it enhanced the four-point flexural strength of MPC-based concrete. The four-point flexural strength of specimens with MSF volume fraction from 0.25% to 0.75% were 12.3%, 21.1%, 24.6% higher than that of the specimens without MSF, respectively.

关键词: magnesium phosphate cement-based concrete     micro-steel fibers     four-point flexural strength     compressive strength    

Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption

Ying Yan, Peng Huang, Huiping Zhang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 772-783 doi: 10.1007/s11705-019-1827-y

摘要: Carbon molecular sieve membrane (CMSM)/paper-like stainless steel fibers (PSSF) has been manufactured by pyrolyzing poly (furfuryl alcohol) (PFA) coated on the metal fibers. PFA was synthesized using oxalic acid dihydrate as a catalyst and coated on microfibers by dip coating method. For the purpose of investigating the effects of final carbonization temperature, the composites were carbonized between 400°C and 800°C under flowing nitrogen. The morphology and microstructure were examined by X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, N adsorption and desorption, Raman spectra and X-ray photoelectron spectra. The consequences of characterization showed that the CMSM containing mesopores of 3.9 nm were manufactured. The specific surface area of the CMSM/PSSF fabricated in different pyrolysis temperature varies from 26.5 to 169.1 m ∙g and pore volume varies from 0.06 to 0.23 cm ∙g . When pyrolysis temperature exceeds 600°C, the specific surface, pore diameter and pore volume decreased as carbonization temperature increased. Besides, the degree of graphitization in carbon matrix increased with rising pyrolysis temperature. Toluene adsorption experiments on different structured fixed bed that was padded by CMSM/PSSF and granular activated carbon (GAC) were conducted. For the sake of comparison, adsorption test was also performed on fixed bed packed with GAC. The experimental results indicated that the rate constant ′ was dramatically increased as the proportion of CMCM/PSSF composites increased on the basis of Yoon-Nelson model, which suggested that structured fixed bed padded with CMSM/PSSF composite offered higher adsorption rate and mass transfer efficiency.

关键词: carbon molecular sieve membrane     stainless steel fibers     pyrolysis     structured fixed bed     toluene    

Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures

Mohammed FARUQI, Mohammed Sheroz KHAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 81-91 doi: 10.1007/s11709-018-0468-4

摘要: Fiber reinforced polymer(FRP) have unique advantages like high strength to weight ratio, excellent corrosion resistance, improving deformability and cost effectiveness. These advantages have gained wide acceptance in civil engineering applications. FRP tendons for prestressing applications are emerging as one of the most promising technologies in the civil engineering industry. However, the behavior of such members under the influence of elevated temperatures is still unknown. The knowledge and application of this could lead to a cost effective and practical considerations in fire safety design. Therefore, this study examines the deflection behavior of the carbon fiber reinforced polymer(CFRP) prestressed concrete beam at elevated temperatures. In this article, an analytical model is developed which integrates the temperature dependent changes of effective modulus of FRP in predicting the deflection behavior of CFRP prestressed concrete beams within the range of practical temperatures. This model is compared with a finite element mode (FEM) of a simply supported concrete beam prestressed with CFRP subjected to practical elevated temperatures. In addition, comparison is also made with an indirect reference to the real behavior of the material. The results of the model correlated reasonably with the finite element model and the real behavior. Finally, a practical application is provided.

关键词: FRP     CFRP     concrete     elevated temperatures     deflections     prestress    

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 821-830 doi: 10.1007/s11709-019-0518-6

摘要: Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers; therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs) (32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.

关键词: mixture method     compressive strength     nano-silica     micro-silica     polypropylene fibers    

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 214-223 doi: 10.1007/s11709-016-0332-3

摘要: Stress transfer between reinforcing bars and concrete is engaged through rib translation relative to concrete, and comprises longitudinal bond stresses and radial pressure. The radial pressure is equilibrated by hoop tension undertaken by the concrete cover. Owing to concrete’s poor tensile properties in terms of strength and deformability, the equilibrium is instantly released upon radial cracking of the cover along the anchorage with commensurate abrupt loss of the bond strength. Any improvement of the matrix tensile properties is expected to favorably affect bond in terms of strength, resilience to pullout slip, residual resistance and controlled slippage.The aim of this paper is to investigate the local bond of steel bars developed in adverse tensile stress conditions in the concrete cover. In the tests, the matrix comprises a novel, strain resilient cementitious composite (SRCC) reinforced with polypropylene fibers (PP) with the synergistic action of carbon nano-tubes (CNT). Local bond is developed over a short anchorage length occurring in the constant moment region of a four-point bending short beam. Parameters of investigation were the material structure (comprising a basic control mix, reinforced with CNTs and/or PP fibers) and the age of testing. Accompanying tests used to characterize the cementitious material were also conducted. The test results illustrate that all the benefits gained due to the synergy between PP fibers and CNTs in the matrix, namely the maintenance of the multi-cracking effect with time, the increased strength and deformability as well as the highly increased material toughness, were imparted in the recorded bond response. The local bond response curves thus obtained were marked by a resilient appearance exhibiting sustained strength up to large levels of controlled bar-slip; the elasto-plastic bond response envelope was a result of the confining synergistic effect of CNTs and the PP fibers, and it occurred even without bar yielding.

关键词: carbon nanotubes     strain resilient cementitious composite     polypropylene fibers     tensile bending     bond    

Recent developments in the application of oil palm fibers in cement composites

Emmanuel Owoichoechi MOMOH, Adelaja Israel OSOFERO

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 94-108 doi: 10.1007/s11709-019-0576-9

摘要: Fibers obtained from different parts of the oil palm tree (Elaeis guineensis) have been under investigation for possible use in construction. Studies have been carried out investigating the engineering properties and possible applications of these fibers. However, the experimental methods employed and the values of mechanical and physical properties recorded by various authors are inconsistent. It has therefore become necessary to organize information which would be useful in the design of oil palm fiber cement composites and help researchers and engineers make informed decisions in further research and application. This review provides information about fibers from different parts of the oil palm, their properties, enhancement techniques, current and potential application in cement composites.

关键词: broom     cement composite     concrete     oil palm fiber     Natural fiber-concrete     sustainability    

environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers

GUO Ting, BAI Zhipeng, WU Can, ZHU Tan

《环境科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 224-229 doi: 10.1007/s11783-008-0039-3

摘要: TiO supported on active carbon fiber (TiO/ACF), an absorbable photocatalyst, is a new kind of material applied in air purification. In this paper, the influence of environmental temperature (T) and relative humidity (RH) on the gas-solid adsorption of toluene and the photocatalytic oxidation (PCO) efficiency of adsorbed toluene on TiO/ACF were studied, and then, the purification capability of TiO/ACF was estimated. PCO results showed that although the PCO efficiency increased under high RH and T levels, the amount of adsorption of toluene decreased. Moreover, quantitative analysis results of intermediates indicated that more environmental risk emerged when PCO of toluene was carried out at higher environmental T and RH levels because more toxic intermediates would be accumulated on the TiO/ACF. So, it is significant to control the environmental T and RH conditions in the application of the PCO technique. T = 25°C and RH = 30% is the optimal condition for purifying toluene in our experimental system.

关键词: application     gas-solid adsorption     technique     TiO/ACF     experimental    

推进我国产业用化纤材料的发展

季国标

《中国工程科学》 2003年 第5卷 第7期   页码 24-28

摘要:

回顾了10多年来产业用化纤材料的发展,提出现正处在持续增长期。参考世界发展情况,吸取其中有益的经验。结合我国实际,陈述了大类应用领域的前景以及在宏观管理上需要加强的有关问题。

关键词: 中国     产业用化纤材料     发展    

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 1-19 doi: 10.1007/s11709-021-0723-y

摘要: The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites. Concrete reinforcement with fibers has a long history. Nowadays, many new fibers associated with high performance and possessing eco-environmental characteristics, such as basalt fibers and plant fibers, have received much attention from researchers. In addition, nanomaterials are considered as a core material in the modification of cement composites, specifically in the enhancement of the strength and durability of composites. This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials. The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized. Moreover, future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.

关键词: cement composites     fiber     nanomaterial     mechanical property     durability    

Dyeing fine denier polypropylene fibers with phenylazo- β -naphthol-containing sulfonamide disperse

Zhihua CUI, Weiguo CHEN, Jinzong YANG, Shufen ZHANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 328-335 doi: 10.1007/s11705-009-0216-3

摘要: A series of phenylazo--naphthol-containing sulfonamide disperse dyes were prepared from C.I. Acid Orange 7 by successive reactions of chlorination and amination, and their chemical structures were characterized by FTIR, H NMR, and mass spectrometry. The dyes were applied to coloring of knitted fabrics from fine denier polypropylene fibers by exhaust dyeing and their optimal dyeing conditions, such as dyebath pH, dyeing temperature, dyeing time, and dye concentration were investigated in detail. Then, dye exhaustion, color strength, and color fastnesses of the dyes on the fibers were assessed and summarized. In view of dye exhaustion and color strength of the sulfonamide dyes on fine denier PP fabrics, 90°C was selected as the best dyeing temperature at dye concentration below or equal to 3.0% owf. For achieving higher color strength, 130°C was the better choice when the dye concentration was above 3.0% owf. The sulfonamide dyes, especially secondary sulfonamide dyes, exhibited superior dye exhaustion and color fastnesses to washing, sublimation, and rubbing on fine denier PP fabrics in comparison to C.I. Solvent Yellow 14 bearing the same chromophore but without sulfonamide group.

关键词: polypropylene     FTIR     secondary sulfonamide     Orange     concentration    

In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution

Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1247-8

摘要: Abstract • FeS/carbon fibers were in situ synthesized with Fe-carrageenan hydrogel fiber. • The double helix structure of carrageenan is used to load and disperse Fe. • Pyrolyzing sulfate groups enriched carrageenan-Fe could easily generate FeS. • The adsorption mechanisms include reduction and complexation reaction. Iron sulfide (FeS) nanoparticles (termed FSNs) have attracted much attention for the removal of pollutants due to their high efficiency and low cost, and because they are environmentally friendly. However, issues of agglomeration, transformation, and the loss of active components limit their application. Therefore, this study investigates in situ synthesized FeS/carbon fibers with an Fe-carrageenan biomass as a precursor and nontoxic sulfur source to ascertain the removal efficiency of the fibers. The enrichment of sulfate groups as well as the double-helix structure in ι-carrageenan-Fe could effectively avoid the aggregation and loss of FSNs in practical applications. The obtained FeS/carbon fibers were used to control a Cr(VI) polluted solution, and exhibited a relatively high removal capacity (81.62 mg/g). The main mechanisms included the reduction of FeS, electrostatic adsorption of carbon fibers, and Cr(III)-Fe(III) complexation reaction. The pseudo-second-order kinetic model and Langmuir adsorption model both provided a good fit of the reaction process; hence, the removal process was mainly controlled by chemical adsorption, specifically monolayer adsorption on a uniform surface. Furthermore, co-existing anions, column, and regeneration experiments indicated that the FeS/carbon fibers are a promising remediation material for practical application.

关键词: Carrageenan     FeS     Double-helix structure     Hexavalent chromium    

基于微流控工程的高强力学性能蛋白纤维 Review

孙静, 陈静思, 刘凯, 曾洪波

《工程(英文)》 2021年 第7卷 第5期   页码 615-623 doi: 10.1016/j.eng.2021.02.005

摘要:

21世纪以来,研究者对轻质和高强力学性能的天然蜘蛛丝、蚕丝纤维投入了大量研究。受此研究启发,诸多人工纺丝技术(湿法纺丝、干法纺丝、电纺等)被先后开发,并用以制造坚固的蛋白纤维。然而,传统纺丝手段对所制纤维的控制能力较差。针对此问题,微流控技术已与这些技术完成良好的结合,实现了以精心设计的方式制造生物纤维,且具有操作简单和成本效益的特点。通过控制微流体通道的类型、大小、流速和剪切力,可以精确调节所制造纤维的机械行为。该技术已成功用于制造广泛的蛋白纤维,并推进了蛋白纤维的生产效率及其在各个领域的应用。本文综述了基于微流控技术的蛋白纤维的设计及制造的最新进展。首先简要讨论了天然蜘蛛丝的纺丝过程和微流控技术的纺丝过程。进而,着重讨论了通过微流控技术再生的蛋白纤维的制造及其力学性能,接着讨论了重组蛋白纤维。此外,对其他来源的蛋白纤维也进行了详细回顾。最后,对制造蛋白纤维的微流控技术的发展进行了简要总结与展望。

关键词: 蛋白纤维     微流控     软材料     生物材料    

中国钢桥

潘际炎

《中国工程科学》 2007年 第9卷 第7期   页码 18-26

摘要:

介绍了我国钢桥的发展及国内外的钢桥比较;论述了建造钢桥的钢材及其要求的化学成分和物理力学性能。

关键词: 中国钢桥     钢材     钢桥设计     钢桥结构    

evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers

Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 287-293 doi: 10.1007/s11465-015-0346-x

摘要:

A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

关键词: biocomposite     natural fiber     shrinkage     simulation     warpage    

标题 作者 时间 类型 操作

Effect of fiber hybridization on energy absorption and synergy in concrete

Ahmadreza RAMEZANI, Mohammad Reza ESFAHANI

期刊论文

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

期刊论文

Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption

Ying Yan, Peng Huang, Huiping Zhang

期刊论文

Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures

Mohammed FARUQI, Mohammed Sheroz KHAN

期刊论文

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

期刊论文

The effect of carbon nanotubes and polypropylene fibers on bond of reinforcing bars in strain resilient

Souzana P. TASTANI,Maria S. KONSTA-GDOUTOS,Stavroula J. PANTAZOPOULOU,Victor BALOPOULOS

期刊论文

Recent developments in the application of oil palm fibers in cement composites

Emmanuel Owoichoechi MOMOH, Adelaja Israel OSOFERO

期刊论文

environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers

GUO Ting, BAI Zhipeng, WU Can, ZHU Tan

期刊论文

推进我国产业用化纤材料的发展

季国标

期刊论文

Review of recent developments in cement composites reinforced with fibers and nanomaterials

Jianzhuang XIAO, Nv HAN, Yan LI, Zhongsen ZHANG, Surendra P. SHAH

期刊论文

Dyeing fine denier polypropylene fibers with phenylazo- β -naphthol-containing sulfonamide disperse

Zhihua CUI, Weiguo CHEN, Jinzong YANG, Shufen ZHANG,

期刊论文

In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution

Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun

期刊论文

基于微流控工程的高强力学性能蛋白纤维

孙静, 陈静思, 刘凯, 曾洪波

期刊论文

中国钢桥

潘际炎

期刊论文

evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers

Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ

期刊论文